(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
prod(xs) → prodIter(xs, s(0))
prodIter(xs, x) → ifProd(isempty(xs), xs, x)
ifProd(true, xs, x) → x
ifProd(false, xs, x) → prodIter(tail(xs), times(x, head(xs)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(x, y) → timesIter(x, y, 0, 0)
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
a → b
a → c
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
prodIter(cons(x96857_1, xs96858_1), x) →+ prodIter(xs96858_1, times(x, head(cons(x96857_1, xs96858_1))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [xs96858_1 / cons(x96857_1, xs96858_1)].
The result substitution is [x / times(x, head(cons(x96857_1, xs96858_1)))].
(2) BOUNDS(n^1, INF)